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Navier-Stokes Equations in Aeroacoustics

« Noise can be predicted by solving Full (time-dependent) Compressible
Navier-Stokes Equation (FCNSE) with computational domain extended
to far field : -- but this is not feasible.
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The fluctuating near field of the jet produces propagating pressure waves that
produce far-field sound. The fluctuating flow field as a function of time is needed
in order to calculate sound from first principles. Noise can be predicted by solving
the full, time-dependent, compressible Navier-Stokes equations with the
computational domain extended to far fieid --- but this is not feasible as indicated
above. At high Reynolds number of technological interest turbulence has large
range of scales. Direct numerical simulations (DNS) can not capture the small
scales of turbulence. The large scales are more efficient than the small scales in
radiating sound. The emphasize is thus on calculating sound radiated by large
scales.
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SUBSONIC JETS

® Development of the coherent structure Is largely controlied @ The structure is both axisymmetric and three-dimensional
by the Strouhal number
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The large-scale structure in the initial region of the jet, where most of the noise is
produced is modelled by extending ideas from the nonlinear stability theory. The
large-scale component is modelled as

G = Z il A GyelfX) EXDI ) -t +iNG] +CC (1)

The transversal profile is taken as the eigen function given by the locally-parallel
linear stability theory. For a review on this approach see Mankbadi (1992, Applied
Mechanics Reviews). The amplitude and phase are determined from nonlinear
theory. Results of this theory as seen above indicates that the development of the
large structure is largely controlled by the Strouhal number. At large-enough
amplitudes the process is nonlinear in the sense that one mode can generate/cancel
other modes, which represents a possible technique for noise control. The resuilts
also indicates that the three-dimensional mode of the structure could dominate the
axisymmetric one, depending on the Strouhal number, initial conditions, and axial
location.
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® PREDICTION OF SUBSONIC JET NOISE USING LIGHTHILL’S
THEORY
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Polar distribution of the shear noise intensity I, for 2 = 0. Polar distribution of the shear noise intensity [, (W m-*) for s = 1.
(a) St = 0.18; (b) St = 0.30; (¢) St = 0.80. (a) St = 0.18; (8) St = 0.30; (¢) St = 0.80.

The above shows the directivity of the axisymmetric modes and that of the first
helical modes. These results are from Mankbaldi and Liu (1984) in which
Lighthill’s (1952) theory is used to calculate the shear noise produced by the large-
scale structure in the initial region of the jet.
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SUPERSONIC JET NOISE

c.08 -

-©.08 P

©-1%:5 0.6 <0.0 ®0.0 0.0 T360.0
Asdal looation (%)

GROWTH OF DISTRUBANCE IN UNSTEADY AXISYMMETRIC JET
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EXCITATION OF DISTURBANCE MODES IN AXISYMMETRIC JET AT r = 1

The large scale structure is calculated using the full Navier-Stokes equations.
Gottlieb & Turkel scheme is applied to shear flows. The numerical scheme is
fourth-order accurate in space and second-order accurate in time. The results are
validated by comparing the predicted growth of input disturbance against the
results of the linear stability theory. As the amplitude of disturbance becomes large
nonlinearity come into effect and the linear stability theory is no longer valid.
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Low Re, White noise
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The small scale turbulence is modelled following Smagorinski’s (1963):

;7 =qad;13 - 2vgS; (2)

where qi? is the energy of the residual turbulence,

<up  a<u>
s, - 1 &2 L EF (3)
2 ox oX;

is the strain rate of the resolved scale, and vy is the effective viscosity of the
residual field. Here we take

Vg = (CSA)2V28mnsnm ' (4)
Cs = 0.23

and A is the filter width.

The above figure shows the radial distribution of the mean flow axial velocity at
several streamwise locations.
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FOURIER COMPONENT OF NEAR-FIELD
SOUND SOURCE

This figure shows the Fourier component of the near-field sound source (Strouhals number =
0.5) of a supersonic jet at Mach number 1.5 as seen by an observer in the far-field at 30° to
the jet axis.
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FUTURE PLANS

@® Subgrid-Scale Models:
Compressibility Effects -- Erelbacher (1990)
Dynamical -- Moin et al. (1992)
One-Equation Model -- Hortituti (1985)

® Validation of the near field against experimental results

® Far-Field Sound:

Lilley (1974)
Linearized Euler Equation

® Validation of the far-field sound against experimental data
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